A former mentor-student duo has published successive papers in JACS.
Total Synthesis of Antheliolide A
Chandra Sekhar Mushti, Jae-Hun Kim, and E. J. Corey
http://dx.doi.org/10.1021/ja066336b
Total Synthesis of (±)-Chartelline C
Phil S. Baran and Ryan A. Shenvi
http://dx.doi.org/10.1021/ja0659673
First, Corey publishes a synthesis of Antheliolide and then Baran publishes Chartelline. Corey uses a several nice transformations including a [2+2] ketene formation. In one step, he uses LiOH/MeOH to deprotect a TMS protected alkyne, instead of TBAF, because TBAF will also protect the TBDPS group. Why does LiOH protect only the TBS and not the TBDPS?
Also, in another step, he wanted to convert a (methylated) lactol to a lactone. But he had a sensitive caryophyllene like moeity in the ring, which would have been notoriously sensitive to acid and oxidants. So he takes the indirect way and first converts the OMe to a phenyl seleno, then turns it into a hydroxyl with AgNO3, and then finally uses mild oxidation with TPAP to oxidise the hydroxyl. Neat.
Baran's synthesis is more elegant, and as usual, based on biosynthetic proposals. He does some neat transformations, including a cascade like reaction to effect a nice ring closure.
However, it is the last step which I found interesting, in which he was trying to decarboxylate a vinyl carboxylate. Copper catalyzed decarboxylation failed, but it turned out that the carboxylate was quite sensitive and labile to heat, so simple heating worked; the mechanism involved a proton that seemed to be serving a function akin to copper as noted in the reference below. He also suggested transient positive charge stabilization by chlorine. I know fluorine can do it well; chlorine would be less efficient but could still do it I suppose.
This led to me look up some back references on vinyl decarboxylation. I found out a reference by Theodore Cohen of Pittsburgh (J. Am. Chem. Soc.; 1970; 92(10); 3189-3190) who proposed the following schematic for explaining stabilization of the TS by copper.
He was trying to explain some copper catalyzed quinoline decarboxylations that went back to 1930. I also came upon a 1950 paper by Frank Westheimer (J. Am. Chem. Soc.; 1951; 73(1); 429-435) in which he tried to explain the decarboxylation of alpha-keto acids with copper, a classic reaction which he uses as an enzyme model system.
- Home
- Angry by Choice
- Catalogue of Organisms
- Chinleana
- Doc Madhattan
- Games with Words
- Genomics, Medicine, and Pseudoscience
- History of Geology
- Moss Plants and More
- Pleiotropy
- Plektix
- RRResearch
- Skeptic Wonder
- The Culture of Chemistry
- The Curious Wavefunction
- The Phytophactor
- The View from a Microbiologist
- Variety of Life
Field of Science
-
-
RFK Jr. is not a serious person. Don't take him seriously.1 month ago in Genomics, Medicine, and Pseudoscience
-
-
-
The Site is Dead, Long Live the Site2 years ago in Catalogue of Organisms
-
The Site is Dead, Long Live the Site2 years ago in Variety of Life
-
-
What I read 20194 years ago in Angry by Choice
-
-
-
Histological Evidence of Trauma in Dicynodont Tusks6 years ago in Chinleana
-
Posted: July 21, 2018 at 03:03PM6 years ago in Field Notes
-
Why doesn't all the GTA get taken up?6 years ago in RRResearch
-
-
Harnessing innate immunity to cure HIV8 years ago in Rule of 6ix
-
-
-
-
-
-
post doc job opportunity on ribosome biochemistry!9 years ago in Protein Evolution and Other Musings
-
Blogging Microbes- Communicating Microbiology to Netizens10 years ago in Memoirs of a Defective Brain
-
Re-Blog: June Was 6th Warmest Globally10 years ago in The View from a Microbiologist
-
-
-
The Lure of the Obscure? Guest Post by Frank Stahl12 years ago in Sex, Genes & Evolution
-
-
Lab Rat Moving House13 years ago in Life of a Lab Rat
-
Goodbye FoS, thanks for all the laughs13 years ago in Disease Prone
-
-
Slideshow of NASA's Stardust-NExT Mission Comet Tempel 1 Flyby13 years ago in The Large Picture Blog
-
in The Biology Files
No comments:
Post a Comment
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS