- Home
- Angry by Choice
- Catalogue of Organisms
- Chinleana
- Doc Madhattan
- Games with Words
- Genomics, Medicine, and Pseudoscience
- History of Geology
- Moss Plants and More
- Pleiotropy
- Plektix
- RRResearch
- Skeptic Wonder
- The Culture of Chemistry
- The Curious Wavefunction
- The Phytophactor
- The View from a Microbiologist
- Variety of Life
Field of Science
-
-
From Valley Forge to the Lab: Parallels between Washington's Maneuvers and Drug Development4 weeks ago in The Curious Wavefunction
-
Political pollsters are pretending they know what's happening. They don't.4 weeks ago in Genomics, Medicine, and Pseudoscience
-
-
Course Corrections5 months ago in Angry by Choice
-
-
The Site is Dead, Long Live the Site2 years ago in Catalogue of Organisms
-
The Site is Dead, Long Live the Site2 years ago in Variety of Life
-
Does mathematics carry human biases?4 years ago in PLEKTIX
-
-
-
-
A New Placodont from the Late Triassic of China5 years ago in Chinleana
-
Posted: July 22, 2018 at 03:03PM6 years ago in Field Notes
-
Bryophyte Herbarium Survey7 years ago in Moss Plants and More
-
Harnessing innate immunity to cure HIV8 years ago in Rule of 6ix
-
WE MOVED!8 years ago in Games with Words
-
-
-
-
post doc job opportunity on ribosome biochemistry!9 years ago in Protein Evolution and Other Musings
-
Growing the kidney: re-blogged from Science Bitez9 years ago in The View from a Microbiologist
-
Blogging Microbes- Communicating Microbiology to Netizens10 years ago in Memoirs of a Defective Brain
-
-
-
The Lure of the Obscure? Guest Post by Frank Stahl12 years ago in Sex, Genes & Evolution
-
-
Lab Rat Moving House13 years ago in Life of a Lab Rat
-
Goodbye FoS, thanks for all the laughs13 years ago in Disease Prone
-
-
Slideshow of NASA's Stardust-NExT Mission Comet Tempel 1 Flyby13 years ago in The Large Picture Blog
-
in The Biology Files
Much ado about protein dynamics
Let me alert you, in case you haven't noticed, to the latest issue of Science which is a special issue on protein dynamics.
There is much of merit here, but this article is especially relevant to drug discovery. It talks about the interaction of small molecules and how it reshapes the energy landscape of protein conformational motion. One of the most useful ways of thinking about small molecule-protein interactions is to visualize a protein that fluctuates between several conformational states which are in equilibrium. A small molecule can inhibit the protein by preferentially stabilizing one of these states.
The article illustrates this concept with several examples, most notably inhibition of kinases. Many kinases exist in an inactive and active state and kinase inhibitors stabilize and block one of these states. Such conformational trapping can also reduce mobility of the protein. The article also describes how certain kinase inhibitors such as imatinib and nilotinib trap the kinase in the inactive state while others such as dasatinib trap it in an active state. Although all three of these are classified as ATP-competitive inhibitors, dasatinib blocks the Abl-Bcr kinase by effecting an allosteric movement of a particular loop. Allosteric inhibitors of kinases are of value since they won't target the highly conserved ATP-binding site, thus reducing problems with selectivity. But allosteric targeting is difficult since many times it involves targeting shallow, poorly defined sites including those involved in protein-protein interactions. HTS campaigns aimed at disrupting P-P interactions usually give very poor results. However, recent tools and especially NMR with labeled residues may improve the detection of weakly binding molecules that may be missed in assays (where the limit is usually 30 µM). HSQC spectra are generally taken of the protein, with and without the inhibitor, and changes in residue resonances can give an indication of conformational changes.
In any case, this article and the others are worth reading. Basically it seems that the remodeling of energy landscapes of proteins by either small molecules or other signals is a concept acquiring central traction. Such a concept could essentially tie together the dual problems of protein folding and inhibiting proteins with small molecules.
Reference:
Lee, G., & Craik, C. (2009). Trapping Moving Targets with Small Molecules Science, 324 (5924), 213-215 DOI: 10.1126/science.1169378
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS