When I was taking math classes in college I enjoyed topology, differential equations, calculus and combinatorial math, but somehow could not bring myself to drum up enthusiasm for linear algebra.
If I had picked physics as my major (which I almost did), I would not probably have escaped from the clutches of linear algebra while learning quantum mechanics. As it happened I picked chemistry, and most of the quantum chemistry that was served to me after that was sans linear algebra.
On his blog luysii has an excellent set of notes on linear algebra from a QM class that he audited. As I mentioned on his blog, it's interesting how much one can get away with in QC without linear algebra. Thus, take a look at some classic textbooks Levine, McQuarrie and the classic Pauling and Wilson and one can go a long way with very little LA. The only things that you are really required to know are eigenvalues and eigenfunctions, but even then the Dirac notation is usually skipped in elementary QC. About the only QC book I know which utilizes large doses of LA is the sophisticated book by Szabo and Ostlund.
Yet LA matters and as luysii demonstrates, there is a generality and elegance to it. There is at least one key LA theorem which is mandatory knowledge in QC. When you are learning about the variational principle (which is used to find approximations to the ground state energy of a system), you derive the socalled secular equation by utilizing a very important LA theorem; that a set of linear homogeneous equations has a nontrivial (nonzero) solution if and only if the determinant of the coefficients is zero. Further on, matrices also come into play in important ways when you are learning about the calculation of transition states, normal modes, and energy minima in molecular mechanics. In the latter exercise you have to calculate the Hessian matrix and then diagonalize this monstrosity (thank god for computer programs).
Perhaps it's not surprising that QC can go a long way without much linear algebra. QC is an application of QM to problems of chemical interest, and the whole reason why the Schrodinger formulation of quantum theory became hugely more popular than the equivalent Heisenberg matrix formulation was that it was more tractable to applications (essentially plug in the correct expression for the potential energy) and couched in the more familiar 19th century language of differential equations. If you wish to know about matrix mechanics take a look at Max Born's excellent book "Atomic Physics"; I had to give up on that particular section.
But even the great Erwin's celebrated paper introducing his equation was titled "Quantization as an Eigenvalue Problem". Maybe it is worth even for a "quantum engineer" (as the late Wolfgang Pauli once somewhat derisively called Enrico Fermi) to learn some linear algebra.
 Home
 Angry by Choice
 Catalogue of Organisms
 Chinleana
 Doc Madhattan
 Games with Words
 Genomics, Medicine, and Pseudoscience
 History of Geology
 Moss Plants and More
 Pleiotropy
 Plektix
 RRResearch
 Skeptic Wonder
 The Culture of Chemistry
 The Curious Wavefunction
 The Phytophactor
 The View from a Microbiologist
 Variety of Life
Field of Science








Hidden figures: 2.303, slide rules and classrooms mired in the last century4 weeks ago in The Culture of Chemistry





Harnessing innate immunity to cure HIV10 months ago in Rule of 6ix

WE MOVED!11 months ago in Games with Words







post doc job opportunity on ribosome biochemistry!2 years ago in Protein Evolution and Other Musings

Growing the kidney: reblogged from Science Bitez2 years ago in The View from a Microbiologist

Blogging Microbes Communicating Microbiology to Netizens2 years ago in Memoirs of a Defective Brain



The Lure of the Obscure? Guest Post by Frank Stahl5 years ago in Sex, Genes & Evolution


Lab Rat Moving House5 years ago in Life of a Lab Rat

Goodbye FoS, thanks for all the laughs5 years ago in Disease Prone


Slideshow of NASA's StardustNExT Mission Comet Tempel 1 Flyby6 years ago in The Large Picture Blog

in The Biology Files
2 comments:
Markup Key:
 <b>bold</b> = bold
 <i>italic</i> = italic
 <a href="http://www.fieldofscience.com/">FoS</a> = FoS
Subscribe to:
Post Comments (Atom)
Ashutosh thanks for the mention, but I'm writing up these notes because linear algebra was NOT discussed or developed very much in the QM course (for one thing there wasn't time, for another I don't think the students had ever been exposed to it).
ReplyDeleteI'd studied LA on my own years ago, but didn't really appreciate what was going on (e.g. what Hermitian matrices are good for etc. etc.) until I audited QM. So it works both ways  QM illuminates LA and vice versa.
Luysii
Ah, that explains it. I was indeed surprised that a college course on QM would include so much LA. In fact most of my physics friends also did not really learn much LAinspired QM. Thus this is an eyeopener. By the way I vaguely remember some of my smart math olympiad friends in college recommending a classic; "Finite dimensional vector spaces" by Paul Halmos.
ReplyDelete