Field of Science

Showing posts with label basic research. Show all posts
Showing posts with label basic research. Show all posts

On gravitational waves and the virtue of patience

From MIT physicist and science writer Alan Lightman - author of the wonderful "Einstein's Dreams". He is describing how the scientists whose work led to the groundbreaking discovery of gravitational waves this month knew they were in for the long haul when they proposed the pie-in-the-sky project LIGO in the 70s. It also seems to be a message the country needs to embrace in the Era of Quarterly Expectations. (Hat tip: Tom Levenson)
"The world at large, and the United States in particular, has developed an unfortunate need for instant gratification. We live not only in the age of information. We live in the Age of the Now. We grow impatient with printers that cannot churn out 10 pages per minute, or with computer screens that take 30 seconds to boot up. We avoid investing in companies that do not promise payoffs within a few years. Federal research and development, as a fraction of gross domestic product, has been going down and down. Perhaps even our foreign policy has been plagued by a hurried view of the world, seeking immediate results. 
In science, as in many other precincts of the Age of the Now, too often we celebrate the instant discovery, the sudden breakthrough, the quick and glamorous result. Drever, Thorne and Weiss, and the many scientists and institutions that supported their dream, did not seek instant gratification. They had a vision, and they wandered the desert with that vision for 40 years."

How to run a world-class lab

One of this year's Nobel laureates in physics, Serge Haroche, has a few words of wisdom for fostering a good research environment.

Our experiments could only have succeeded with the reliable financial support provided by the institutions that govern our laboratory, supplemented by international agencies inside and outside Europe. European mobility programs also opened our laboratory to foreign visitors, bringing expertise and scientific culture to complement our own. During this long adventure in the micro-world, my colleagues and I have retained the freedom to choose our path without having to justify it with the promise of possible applications. 



Unfortunately, the environment from which I benefited is less likely to be found by young scientists embarking on research now, whether in France or elsewhere in Europe. Scarcity of resources due to the economic crisis, combined with the requirement to find scientific solutions to practical problems of health, energy and the environment, tend to favour short-term, goal-oriented projects over long-term basic research. Scientists have to describe in advance all their research steps, to detail milestones and to account for all changes in direction. This approach, if extended too far, is not only detrimental to curiosity-driven research. It is also counterproductive for applied research, as most practical devices come from breakthroughs in basic research and would never have been developed out of the blue.

Haroche’s quip about short-termism being bad even for applied research is especially worth noting, since applied research is supposedly what short-termism seeks to encourage. The point is that the path of science is almost always unexpected and complex, and most applied research is the illegitimate albeit charming and often spectacularly successful offspring of blue-sky basic research. Neglect of this foundation is one major flaw I see with the whole concept of “translational medicine” which seems to lack an accurate appreciation of the haphazard way in which basic scientific principles have actually translated to practical medical therapies. Unless we know the underlying biology of disease, which even now is quite complex for us to grasp, it’s not going to be possible to have scientists sit in a room and think up treatments for Alzheimer’s disease and diabetes.
On a related note, an article in Nature explores the phenomenal success of the MRC’s Laboratory of Molecular Biology at Cambridge which has produced 9 Nobel Laureates, the latest one in 2009. The piece also talks about similar successful experiments, for instance at Justus von Liebig’s laboratory in Germany or Ivan Pavlov’s laboratory in Russia and places a significant share of the productivity in successful labs on the shoulders of their leaders. The MRC’s leaders led less and interacted more. Tea was a daily tradition and Nobel Laureates sat at the same table with graduate students and postdocs during lunch. Everyone was encouraged to speak up and no one was afraid to ask what could be perceived as a stupid question; Tom Steitz who was awarded a prize for work on the ribosome remembers a meeting where director Max Perutz asked about the difference between prokaryotes and eukaryotes. The ideal leader directed less vertically and more horizontally.
Some of the Nobel Laureates at the MRC

A similar tradition was carried out in many other outstanding institutes producing famous scientists; these included the Institute for Advanced Study at Princeton (where Robert Oppenheimer used to say that “tea is where we explain to each other what we don’t understand”), Niels Bohr’s institute in Copenhagen which nurtured the founders of quantum mechanics and the forerunner of the MRC, Ernest Rutherford and Lawrence Bragg’s Cavendish Laboratories which discovered both the neutron and the structure of DNA. The same principle applied to industrial labs like Bell Labs and IBM; as Jon Gertner’s book on Bell Labs chronicles, Bell’s first director Mervin Kelly gave his scientists the same freedom. This freedom manifested itself even in the physical layout of the buildings which featured movable panels that allowed experimental and theoretical sanctums to connect. And it goes without saying that Kelly and most other successful directors were world class scientists themselves or at least people with a considerable scientific background. Contrast that with much of today’s corporate research enterprise where scientific leaders at the top have been replaced with lawyers and MBAs.
It’s also worth noting that these scientific leaders never made the mistake of equating quality with quantity; Rutherford’s lab even had a rule that forbade work after 6 PM except in rare cases. There’s a huge lesson there for professors and departments who insist that their students spend 12 or 14 hour days at the bench. As history has adequately demonstrated, it’s very much possible to work a productive 9 AM – 6 PM workday and still achieve significant results, and I have been told this is the way it still largely works in countries like Germany. The key lies in culture, collaboration and focus, not raw work hours. It’s really not that hard to understand that the best results arise when scientists are supplied with a general overarching plan but are otherwise left free to work out their own details for implementing it. And often the best short-term research is long-term research.
A friend of mine tells the story of her father who was working at a well-known government institution in the US. He quit when they started circulating forms that asked the scientists what they thought they would discover next year. “How the hell should I know what I am going to discover next year?”, wrote my friend’s father on the form before he stormed out.
Image links: 1, 2 

Post first published on the Scientific American blog network.

The End of Industrial Productivity?

A long time ago when I was a fledgling student studying college physics and chemistry, I ventured into the haunting, dark recesses of our library which housed science classics. As I browsed through those classic volumes by Kelvin, Einstein, Raleigh and Medawar and as the dust gathered on to my clothes, I saw a 1930s book titled "Electronics" by Bill Shockley, the Bill Shockley of the legendary Bell Labs who had played a key part in the invention of the transistor. As I eagerly opened the pages of the book in a cloud of dust, I was surprised to see equations covering the pages. Almost no diagrams of circuits and components found in modern electronic texts, but reams and reams of quantum mechanics detailing calculations of current density and electron transport. It was then that I realised that that singular device, the transistor, had its conceptual roots in fundamental physics. Without quantum mechanics and the basic physics of electron flow the transistor may never have been possible. The experience drove home a fundamental point for me; without the roots of basic research that nourish and inspire, there are no fruits of applications possible.

Sadly, the same Bell Labs which exemplified all that basic research stood for and which for a long time was the greatest industrial basic research laboratory in the world, is now getting divorced from its roots. An article in Nature documents the sad case of the once scientific giant whose basic physics research team has dwindled to four scientists, an extremely sad state of affairs. The division that generated six Nobel Prizes for basic and breakthrough research has now shrunk to basically non-existence. Unfortunately similar trends are seen elsewhere. The consequences for future technology cannot be anything but dire. In the last fifty years almost every one of the technological innovations that we take for granted, including the computer, laser, transistor and digital memory to name a few have come from research in basic science. Nobel Prizes have been gathered in the dozens by scientists who worked on these discoveries. Where Bell Labs scientists won Nobels for the laser and the transistor, IBM researchers in a grand encore performance won two Nobels in the 1980s- one for the invention of the Scanning Tunneling Microscope (STM) and one for high-temperature superconductors. Most recently it was academic scientists who won the Nobel for discovering Giant Magnetoresistance, the phenomenon that powers our iPods and computers.

This trend is hardly surprising however. As companies move increasingly towards satisfying the bottom line for the next quarter and pleasing shareholders, they are having scant patience and even more scant funding for basic research. While product development may diversify in the short term, it's like water flowing over a long distance which is slowly cut off at the source; while the flow of water will persist and even appear normal for some time, it is undoubtedly going to shut down after a while. With their current policies of downsizing even applied departments, let alone ones doing basic research, companies are headed for a downfall in new product innovation in the long term. And when I mean "new", I don't mean just another version of Windows or another MP3 player. I am talking about the kind of innovation that leads to a paradigm shift, an outburst of raw data resulting from a single discovery that drives ideas, applications and services for many future decades. Transistors, lasers and STMs all revolutionized the practice of science and technology.

Such innovation can be possible only if we go back to the roots of technology. After all, every technological invention that we are aware of is ultimately based on the laws of physics and chemistry. It is only by exploring these laws that we can discover new applications for them. Consider organic semiconductors and quantum computing that will promise untold increases in computer power that will overcome Moore's Law, or number theory and quantum entanglement that will allow for foolproof data encryption. If the history of basic industrial research has taught us anything, it is that only by pushing the frontiers of the fundamental laws of science can one achieve windfalls of industrial innovation. And yet it is precisely this kind of research that industry is ignoring, at its own and our great peril.

Sadly, science is not like cocaine, promising instant rewards. It treads a risky path, strewn with blind alleys and failures. And yet treading this path is an essential series of steps to achieve the few gems scattered on it. Only in the uncertainty of scientific discovery lies great opportunity. But companies, whether they are hardware developers or pharmaceutical innovators, want the gems without having to vet the stones. Pipe dreams. The greatest entrepreneurs of our time, Warren Buffet and Bill Gates, became who they are by engaging in a philosophy of investment. Invest now, reap the rewards tomorrow. Industry seems to have forgotten this essential philosophy of promising productivity. If this trend continues for long, the verdant branches of the tree that we see today, already divorced from their roots, will wither away to nothingness. And Bell Labs will be the star at the top that first toppled.

P.S. Excimer fumes too