Field of Science

Showing posts with label genetics. Show all posts
Showing posts with label genetics. Show all posts

Book review: "Unraveling the Double Helix: The Lost Heroes of DNA", by Gareth Williams.

Newton rightly decried that science progresses by standing on the shoulders of giants. But his often-quoted statement applies even more broadly than he thought. A case in point: when it comes to the discovery of DNA, how many have heard of Friedrich Miescher, Fred Griffith or Lionel Alloway? Miescher was the first person to isolate DNA, from pus bandages of patients. Fred Griffith performed the crucial experiment that proved that a ‘transforming principle’ was somehow passing from a virulent dead bacterium to a non-virulent live bacterium, magically rendering the non-virulent strain virulent. Lionel Alloway came up with the first expedient method to isolate DNA by adding alcohol to a concentrated solution.

In this thoroughly engaging book, Gareth Williams brings these and other lost heroes of DNA. The book spans the first 85 years of DNA and ends with Watson and Crick's discovery of the structure. There are figures both well-known and obscure here. Along with those mentioned above, there are excellent capsule histories of Gregor Mendel, Thomas Hunt Morgan, Oswald Avery, Rosalind Franklin, Maurice Wilkins and, of course, James Watson and Francis Crick. The book traces a journey through a variety of disciplines, most notably the fields of biochemistry and genetics, that were key in deciphering the structure of DNA and its role in transmitting hereditary characteristics.
Williams’s account begins with Miescher’s isolation of DNA from pus bandages in 1869. At that point in time, proteins were well-recognized, and all proteins contained a handful of elements like carbon, nitrogen, oxygen and sulfur. The one element they did not contain was phosphorus. It was Miescher’s discovery of phosphorus in his extracts that led him and others to propose the existence of a substance they called ‘nuclein’ that seemed ubiquitous in living organisms. The two other towering figures in the biochemical history of DNA are the German chemist Albrecht Kossel and the Russian-born American chemist Phoebus Levene. They figured out the exact composition of DNA and identified its three key components: the sugar, the phosphate and most importantly, the four bases (adenine, cytosine, thymine and guanine). Kossel was such a revered figure that his students led a torchlight procession through the streets from the train station to his lab when he came back to Heidelberg with the Nobel Prize.
Levene’s case is especially interesting since his identification of the four bases set DNA research back by years, perhaps decades. Because there were only four bases, he became convinced that DNA could never be the hereditary material because it was too simple. His ‘tetra-nucleotide hypothesis’ which said that DNA could only have a repeating structure of four bases doomed its candidacy as a viable genetic material for a long time. Most scientists kept on believing that only proteins could be complex enough to be the stuff of heredity.
Meanwhile, while the biochemists were unraveling the nature of DNA in their own way, the geneticists paved the way. Williams has a brisk but vivid description of the lone monk Gregor Mendel toiling away with thousands of meticulous experiments on pea plants in his monastery in the Moravian town of Brünn. As we now know, Mendel was fortunate in picking the pea plant since it’s a purebred species. Mendel’s faith in his own work was shaken toward the end of his life when he tried to duplicate his experiments using the hawkweed plant whose genetics are more complex. Tragically, Mendel’s notebooks and letters were burnt after his death and his work was forgotten for thirty years before it was resurrected independently by three scientists, all of whom tried to claim credit for the discovery. The other major figure in genetics during the first half of the 20th century was Thomas Hunt Morgan whose famous ‘fly room’ at Columbia University carried our experiments showing the presence of hundreds of genes are precise locations on chromosomes. In his lab, there was a large pillar on which Morgan and his students drew the locations of new genes.
From the work of Mendel, Morgan, Levene and Kossel we move on to New York City where Oswald Avery, Colin MacLeod and Maclyn McCarty at the Rockefeller University and the sharp-tongued, erudite Erwin Chargaff at Columbia made two seminal discoveries about DNA. Avery and his colleagues showed that DNA is in fact the ‘transforming principle’ that Fred Griffith had identified. Chargaff showed that the proportions of A and T and G and C in DNA were similar. Williams says in the epilogue that of all the people who were potentially robbed of Nobel Prizes for DNA, the two most consequential were Avery and Griffith.
By this time, along with biochemistry and genetics, x-ray crystallography had started to become very prominent in the study of molecules: by shining x-rays on a crystal and interpreting the resulting diffraction pattern, scientists could potentially figure out the structure of the molecule on an atomic level. Williams provides an excellent history of this development, starting with the Nobel Prize-winning father-son duo of William Henry and William Lawrence Bragg (who remains the youngest Nobel Laureate at age 25) and continuing with other pioneering figures like J. D. Bernal, William Astbury, Dorothy Hodgkin and Linus Pauling.
Science is done by scientists, but it’s made possible by science administrators. Two major characters star in the DNA drama as science administrators par excellence. Both had their flaws, but without the institutions they set up to fund and encourage biological work, it is doubtful whether the men and women who discovered DNA and its structure would have made the discoveries when and where they did. William Lawrence Bragg repurposed the famed Cavendish Laboratories at Cambridge University – where Ernest Rutherford had reigned supreme - for crystallographic work on biological molecules. A parallel effort was started by John Randall, a physicist who had played a critical role in Britain’s efforts to develop radar during World War 2, at King’s College in London. While Bragg recruited Max Perutz, Francis Crick and James Watson for his group, Randall recruited Maurice Wilkins, Ray Gosling and Rosalind Franklin.
One of the strengths of Williams’s book is that it resurrects the role of Maurice Wilkins who is often regarded as the least important of the Nobel Prize-winning triplet of Watson, Crick and Wilkins. In fact, it was Wilkins and Gosling who took the first x-ray photographs of DNA that seemed to indicate a helical structure. Wilkins was also convinced that DNA and not protein was the genetic material when that view was still unfashionable; he passed on his infectious enthusiasm to Crick and Watson. But even before his work, the Norwegian crystallographer Sven Furberg had been the first to propose a helix – although a single one – as the structure of DNA based on his density and other important features. A key feature of Furberg’s model was that the sugar and the base were perpendicular, which is in fact the case with DNA.
The last third of the book deals with the race to discover the precise structure of DNA. This story has been told many times, but Williams tells it exceptionally well and especially drives home how Watson and Crick were able to stand on the shoulders of many others. Rosalind Franklin comes across as a fascinating, complex, brilliant and flawed character. There was no doubt that she was an exceptional scientist who was struggling to make herself heard in a male-dominated establishment, but it’s also true that her prickly and defensive personality made her hard to work with. Unlike Watson, she was especially reluctant to build models, perhaps because she had identified a fatal flaw in one of the pair’s earlier models. It’s not clear how close Franklin came to identifying DNA as a helix; experimentally she came close, but psychologically she seemed reluctant and bounced back and forth between helical and non-helical structures.
So what did Watson and Crick have that the others did not? As I have described in a post written a few years ago on the 70th anniversary of the DNA structure, many others were in possession of key parts of the evidence, but only Watson and Crick put it all together and compulsively built models. In this sense it was very much like the blind men and the elephant; only Watson and Crick bounced around the entire animal and saw how it was put together. Watson’s key achievement was recognizing the precise base pairing: adenine with thymine and guanine with cytosine. Even here he was helped by the chemist Jerry Donohue who corrected a key chemical feature of the bases (organic chemists will recognize it as what’s called keto-enol tautomerism). Also instrumental were Alec Stokes and John Griffith. Stokes was a first-rate mathematician who, using the theory of Bessel functions, figured out the diffraction pattern that would correspond to a helix; Crick who was a physicist well-versed with the mathematics of diffraction, instantly understood Stokes’s work. Griffith was a first-rate quantum chemist who figured out, independently of Donohue, that A would pair with T and G with C. Before the advent of computers and what are called ab initio quantum chemical techniques, this seems like a remarkable achievement.
With Chargaff’s knowledge of the constancy of base ratios, Donohue’s precise base structures, Franklin and Gosling’s x-ray measurements and Stokes’s mathematics of helix diffraction patterns, Watson and Crick had all the information they needed to try out different models and cross the finish line. No one else had this entire map of information at their disposal. The rest, as they say, is history.
I greatly enjoyed reading Williams’s book. It is, perhaps, the best book on the DNA story that I have read since Horace Freeland Judson’s “The Eighth Day of Creation”. Even characters I was familiar with newly come to life as flawed, brilliant human beings with colorful lives. The account shows that many major and minor figures made important discoveries about DNA. Some came close to figuring out the structure but never made the leap, either because they lacked data or because of personal prejudices. Taken as a whole, the book showcases well the intrinsically human story and the group effort, playing out over 85 years, at the heart of the one of the greatest discoveries that humanity has made. I highly recommend it.

Mendel, Weldon and the uncertainty of counterfactuals

Nature has an opinion piece on Mendel's legacy by Gregory Radick who is a professor at the University of Leeds. The focus of Radick's article which is titled "Teach students the biology of their time" is on a counterfactual: what if instead of Mendel's work, it was Raphael Weldon's work which had been recognized, emphasized and perpetuated by the early pioneers of genetics?

The point Radick is making is that Mendel's followers emphasized the primacy of nature (as in 'nature vs nurture') in the form of the gene so much that the role of nurture was sidelined. Weldon on the other hand seems to have been an early proponent of the role that the environment played in the sculpting of physical and behavioral traits. An accompanying comment in Nature endorses the piece and says that if Weldon's work had actually acquired the importance it should have, we might not have gotten obsessed with finding a "gene for this" and a "gene for that".

It's always interesting to consider what ifs and counterfactuals, not in the least because they serve as a useful vehicle for taking stock of what actually happened and for analyzing various currents of thought. But the real lesson in counterfactuals in my opinion is about historical contingency. My main problem with counterfactuals is that we assign them a degree of certainty that history's messy contours always seem to thwart. Since factual events themselves by definition are well-charted and reflected in the facts, we seem to think that their counterfactuals would also be well-charted. This in my opinion is affording a kind of luxury of prediction to history that it simply does not possess.

Radick's argument, as interesting as it, also suffers from these shortcomings in my opinion. I was vaguely familiar with Weldon's work but had the renewed opportunity to take a look at it in Sid Mukherjee's new book "The Gene." One thing that the Nature pieces don't mention is that Weldon had allied himself with Francis Galton and Karl Pearson in clinging to a flawed theory of fractional genetic inheritance in which one half of an offspring's genes would come from the parents, a fourth from the grandparents and so on. William Bateson enthusiastically fought against this idea and in the end prevailed.

But more pertinently here, it's interesting to consider some of the details of the counterfactuals that Radick and Nature are discussing here. Let's say it was Weldon's body of work and not Mendel's that was emphasized. Would it have really diverted attention from the importance of the gene? And would it have really compelled observers to take the environment more seriously and not talk about "genes for this" trait and "genes for that" trait? And if Weldon had prevailed along with Galton against Bateson, would Galton's eugenics drive have acquired an even more respectable stamp? I am not sure of the trajectory of any of these potential developments. 

More intriguingly, do we seriously think that a recognition of the environment would have stopped Thomas Hunt Morgan from actually finding important genes for specific traits in fruit flies? And would it have stopped Hermann Mueller from then finding out cartloads of mutations in these genes by exposing flies to x-rays? On the other hand, Theodosius Dobzhansky did determine the effects of environmental factors in his own fruit fly experiments in the 40s. I think that if anything, mainstream science was quite attuned to the effects of the environment in influencing traits, and genetic factors took some time to be cemented as serious determinants

I think we can agree that Morgan and Mueller's work was supremely important in the history of genetics, and if Weldon's followers had actually kept them from finding what they did it would have been a great loss for science and a strike against Weldonian theorizing. Just because trying to find genes for every single trait or disorder is messy or often a doomed process does not mean the concept itself is a problem; I would say that on balance the search for genetic determinants of traits has been enormously useful and promises to provide a bonanza especially in medicine. Strangely enough, the specific case of causal genes which the Nature piece invokes to illustrate the problems with genetic immutability in fact demonstrates the opposite point: these would be genes for heart disease. The article asks what the tangible gains are in asking whether there is a "gene for heart disease", when at least two genes for heart disease (ones for HMG-CoA reductase and PCSK9) have led to two of the most important targeted therapies for the ailment, therapies which have tangibly improved and saved tens of thousands of lives. Heart disease is of course a complex mix of genes and environment, but it's also a medical disorder where the delineation of a "gene for that" has been extremely helpful.

Secondly, it's not as if the emphasis on environment over genes has ever stopped ideologues and scientists from pursuing deeply flawed ideas with tragic consequences. It was precisely a rejection of Mendelian genetic determinism that led Trofim Lysenko and his Soviet overlords to embark on campaigns to "reeducate" wheat through "shock therapy" and to reeducate dissidents through "Gulag therapy". The noted Mendelian geneticist Nikolai Vavilov was imprisoned and tortured for his theories and he died a broken man. Other socialist ideologies have also engaged in similar campaigns. The important lesson here is that the perversion of a scientific idea for ideological purposes does not make an argument either for or against the idea itself. The use of social Darwinism in supporting Nazism makes as much of a case for rejecting genetic causes as the use of environmental leveling in supporting Soviet socialism makes for rejecting environmental causes.

The piece asks whether teaching counterfactuals might be a good tool for exposing students to different schools of thoughts and provoking them to think about other directions that history might have taken. Generally speaking I am always in favor of teaching students the history of scientific ideas, but I also think that this works only if we also teach them the inadequacy - in fact the futility - of post-factual historical prediction. The actual unfolding of history is so messy and subject to so many contingent forces that its march looks linear only in retrospect, when we have its one true manifestation in the form of bare facts at hand. Any speculation regarding what ifs remains speculation at best.

The future - not in our stars but in our genes: A review of Siddhartha Mukherjee's "The Gene: An Intimate History"

Genetics is humanity and life writ large, and this book on the gene by physician and writer Siddhartha Mukherjee paints on a canvas as large as life itself. It deals with both the history of genetics and its applications in health and disease. It shows us that studying the gene not only holds the potential to transform the treatment of human disease and to feed the world’s burgeoning population, but promises to provide a window into life’s deepest secrets and into our very identity as human beings.

The volume benefits from Mukherjee’s elegant literary style, novelist’s eye for character sketches and expansive feel for human history. While there is ample explanation of the science, the focus is really on the brilliant human beings who made it all possible. The author’s own troubling family history of mental illness serves as a backdrop and keeps on rearing its head like a looming, unresolved question. The story begins with a trip to an asylum to see his troubled cousin; two of his uncles have also suffered from various "unravelings of the mind". This burden of personal inheritance sets the stage for many of the questions about nature, nurture and destiny asked in the pages that follow.

The book can roughly be divided into two parts. The first part is a sweeping and vivid history of genetics. The second half is a meditation on what studying the gene means for human biology and medicine.

The account is more or less chronological and this approach naturally serves the historical portion well. Mukherjee does a commendable job shedding light on the signal historical achievements of the men and women who deciphered the secret of life. Kicking off from the Greeks’ nebulous but intriguing ideas on heredity, the book settles on the genetics pioneer Gregor Mendel. Mendel was an abbot in a little known town in Central Europe whose pioneering experiments on pea plants provided the first window into the gene and evolution. He discovered that discrete traits could be transmitted in statistically predictable ways from one generation to next. Darwin came tantalizingly close to discovering Mendel’s ideas (the two were contemporaries), but inheritance was one of the few things he got wrong. Instead, a triumvirate of scientists rediscovered Mendel’s work almost thirty years after his death and spread the word far and wide. Mendel’s work shows us that genius can emerge from the most unlikely quarters; one wonders how rapidly his work might have been disseminated had the Internet been around.

The baton of the gene was next picked up by Francis Galton, Darwin’s cousin. Galton was the father of eugenics. Eugenics has now acquired a bad reputation, but Galton was a polymath who made important contributions to science by introducing statistics and measurements in the study of genetic differences. Many of the early eugenicists subscribed to the racial theories that were common in those days; many of them were well intended if patronizing, seeking to ‘improve the weak’, but they did not see the ominous slippery slope which they were on. Sadly their ideas fed into the unfortunate history of eugenics in America and Europe. Eugenics was enthusiastically supported in the United States; Mukherjee discusses the infamous Supreme Court case in which Oliver Wendell Holmes sanctioned the forced sterilization of an unfortunate woman named Carrie Buck by proclaiming, “Three generations of imbeciles are enough”. Another misuse of genetics was by Trofim Lysenko who tried to use Lamarck’s theories of acquired characteristics in doomed agricultural campaigns in Stalinist Russia; as an absurd example, he tried to “re educate” wheat using “shock therapy”. The horrific racial depredations of the Nazis which the narrative documents in some detail of course “put the ultimate mark of shame” on eugenics.

The book then moves on to Thomas Hunt Morgan’s very important experiments on fruit flies. Morgan and his colleagues found a potent tool to study gene propagation in naturally occurring mutations. Mutations in specific genes (for instance ones causing changes in eye color) allowed them to track the flow of genetic material through several generations. Not only did they make the crucial discovery that genes lie on chromosomes, but they also discovered that genes could be inherited (and also segregated) in groups rather than by themselves. Mukherjee also has an eye for historical detail; for example, right at the time that Morgan was experimenting on flies, Russia was experimenting with a bloody revolution. This coincidence gives Mukherjee an opening to discuss hemophilia in the Russian royal family – a genetically inherited disease. A parallel discussion talks about the fusion of Darwin's and Mendel’s ideas by Ronald Fisher, Theodosius Dobzhansky and others into a modern theory of genetics supported by statistical reasoning in the 40s – what’s called the Modern Synthesis.

Morgan and others’ work paved the way to recognizing that the gene is not just some abstract, ether-like ghost which transmits itself into the next generation but a material entity. That material entity was called DNA. The scientists most important for recognizing this fact were Frederick Griffiths and Oswald Avery and Mukherjee tells their story well; however I would have appreciated a fuller account of Friedrich Miescher who discovered DNA in pus bandages from soldiers. Griffiths showed that DNA can be responsible for converting non-virulent bacteria to virulent ones; Avery showed that it is a distinct molecule separate from protein (a lot of people believed that proteins with their functional significance were the hereditary material).

All these events set the stage for the golden age of molecular biology, the deciphering of the structure of DNA by James Watson (to whom the quote in the title is attributed), Francis Crick, Rosalind Franklin and others. Many of these pioneers were inspired by a little book by physicist Erwin Schrodinger which argued that the gene could be understood using precise principles of physics and chemistry; his arguments turned biology into a reductionist science. Mukherjee’s account of this seminal discovery is crisp and vivid. He documents Franklin’s struggles and unfair treatment as well as Watson and Crick’s do-what-it-takes attitude to use all possible information to crack the DNA puzzle. As a woman in a man’s establishment Franklin was in turn patronized and sidelined, but unlike Watson and Crick she was averse to building models and applying the principles of chemistry to the problem, two traits that were key to the duo’s success.

The structure of DNA of course inaugurated one of the most sparkling periods in the history of intellectual thought since it immediately suggested an exact mechanism for copying the hereditary material as well as a link between DNA and proteins which are the workhorses of life. The major thread following from DNA to protein was the cracking of the genetic code which specifies a correspondence between nucleotides on a gene and the amino acids of a protein: the guiding philosophers in this effort were Francis Crick and Sydney Brenner. A parallel thread follows the crucial work of the French biologists Francois Jacob and Jacques Monod - both of whom had fought in the French resistance during World War 2 - in establishing the mechanism of gene regulation. All these developments laid the foundation for our modern era of genetic engineering.

The book devotes a great deal of space to this foundation and does so with verve and authority. It talks about early efforts to sequence the gene at Harvard and Cambridge and describes the founding of Genentech, the first company to exploit the new technology which pioneered many uses of genes for producing drugs and hormones: much of this important work was done with phages, viruses which infect bacteria. There is also an important foray into using genetics to understand embryology and human development, a topic with ponderous implications for our future. With the new technology also came new moral issues, as exemplified by the 1975 Asilomar conference which tried to hammer out agreements for the responsible use of genetic engineering. I am glad Mukherjee emphasizes these events, since their importance is only going to grow as genetic technology becomes more widespread and accessible.

These early efforts exploded on to the stage when the Human Genome Project (HGP) was announced, and that’s where the first part of the book roughly ends. Beginning with the HGP, the second part mainly focuses on the medical history and implications of the gene. Mukherjee’s discussion of the HGP focuses mainly on the rivalries between the scientists and the competing efforts led by Francis Collins of the NIH and Craig Venter, the maverick scientist who broke off and started his own company. This discussion is somewhat brief but it culminates in the announcement of the map of the human genome at the White House in 2000. It is clear now that this “map” was no more than a listing of components; we still have to understand what the components mean. Part of that lake of ignorance was revealed by the discovery of so-called ‘epigenetic’ elements that modify not the basic sequence of DNA but the way it’s expressed. Epigenetics is an as yet ill-understood mix of gene and environment which the book describes in some detail. It’s worth noting that Mukherjee’s discussion of epigenetics has faced some criticism lately, especially based on his article on the topic in the New Yorker.

The book then talks about early successes in correlating genes with illness that came with the advent of the human genome and epigenome; genetics has been very useful in finding determinants and drugs for diseases like sickle cell anemia, childhood leukemia, breast cancer and cystic fibrosis. Mukherjee especially has an excellent account of Nancy Wexler, the discoverer of the gene causing Huntington’s disease, whose search for its origins led her to families stricken with the malady in remote parts of Venezuela. While such diseases have clear genetic determinants, as Mukherjee expounds upon at length, genetic causes for diseases like cancer, diabetes and especially the mental illness which plagues members of the author’s family are woefully ill-understood, largely because they are multifactorial and suffer from weakly correlated markers. We have a long way to go before the majority of human diseases can be treated using gene-based treatment. In its latter half the book also describes attempts to link genes to homosexuality, race, IQ, temperament and gender identity. The basic verdict is that while there is undoubtedly a genetic component to all these factors, the complex interplay between genes and environment means that it’s very difficult currently to tease apart influences from the two. More research is clearly needed.

The last part of the book focuses on some cutting edge research on genetics that’s uncovering both potent tools for precise gene engineering as well as deep insights into human evolution. A notable section of the book is devoted to the recent discovery that Neanderthals and humans most likely interbred. Transgenic organisms, stem cells and gene therapy also get a healthy review, and the author talks about successes and failures in these areas (an account of a gene therapy trial gone wrong is poignant and rattling) as well as ethical and political questions which they raise. Finally, a new technology called CRISPR which has taken the world of science by storm gets an honorary mention: by promising to edit and propagate genes with unprecedented precision - even in the germ line - CRISPR has resurrected all the angels and demons from the history of genetics. What we decide about technologies like CRISPR today will impact what our children do tomorrow. The clock is ticking.

In a project as ambitious as this there are bound to be a few gaps. Some of the gaps left me a bit befuddled though. There are a few minor scientific infelicities: for instance Linus Pauling’s structure of DNA was not really flawed because of a lack of magnesium ions but mainly because it sported a form of the phosphate groups that wouldn’t exist at the marginally alkaline pH of the human body. The book’s treatment of the genetic code leaves out some key exciting moments, such as when a scientific bombshell from biochemist Marshall Nirenberg disrupted a major meeting in the former Soviet Union. I also kept wondering how any discussion of DNA’s history could omit the famous Meselson-Stahl experiment; this experiment which very elegantly illuminated the central feature of DNA replication has been called “the most beautiful experiment in biology”. Similarly I could see no mention of Barbara McClintock whose experiments on ‘jumping genes’ were critical in understanding how genes can be turned on and off. I was also surprised to find few details on a technique called PCR without which modern genetic research would be virtually impossible: both PCR and its inventor Kary Mullis have a colorful history that would have been worth including. Similarly, details of cutting-edge sequencing techniques which have outpaced Moore’s Law are also largely omitted. I understand that a 600 page history cannot include every single scientific detail, but some of these omissions seem to me to be too important to be left out.

More broadly, there is no discussion of the pros and cons of using DNA to convict criminals: that would have made for a compelling human interest story. Nor is there much exploration of using gene sequences to illuminate the ‘tree of life’ which Darwin tantalizingly pulled the veil back on: in general I would have appreciated a bigger discussion of how DNA connects us to all living creatures. There are likewise no accounts of some of the fascinating applications of DNA in archaeological investigations. Finally, and this is not his fault, the author suffers from the natural disadvantage of not being able to interview many of the pioneers of molecular biology since they aren’t around any more (fortunately, Horace Freeland Judson’s superb “The Eighth Day of Creation” fills this gap: Judson got to interview almost every one of them for his book). This makes his account of science sound a bit more linear than the messy, human process that it is.

The volume ends by contemplating some philosophical questions: What are the moral and societal implications of being able to engineer genomes even in the fetal stage? How do we control the evils to which genetic technology can be put? What is natural and what isn’t in the age of the artificial gene? How do we balance the relentless, almost inevitable pace of science with the human quest for responsible conduct, dignity and equality? Mukherjee leaves us with a picture of these questions as well as one of his family and their shared burden of mental illness: a mirage searching for realization, a sea of questions looking for a tiny boat filled with answers.

Overall I found “The Gene: An Intimate History” to be beautifully written with a literary flair, and in spite of the omissions, the parts of genetic history and medicine which it does discuss are important and instructive. Its human stories are poignant, its lessons for the future pregnant with pitfalls and possibilities. Its sweeping profile of life’s innermost secrets could not help but remind me of a Japanese proverb quoted by physicist Richard Feynman: “To every man is given the key to the gates of heaven. The same key opens the gates of hell.” The gene is the ultimate key of this kind, and Mukherjee’s book explores its fine contours in all their glory and tragedy. We have a choice in deciding which of these contours we want to follow.

Don't squelch eccentricity

Distinguished scientists including Edward O. Wilson (who for the record despised Watson before) and Richard Dawkins are now coming to James Watson's support. I suspect that the gut reaction that surfaced right after he made his statements obscured any kind of objective reasoning and patient analysis, as often happens with such socially explosive issues. Nobody can say that he had every justification for saying what he did, but more are now rallying to his side and denouncing his dismissal from Cold Spring Harbor and the cancellation of his lecture at the Science Museum. I have already stated my opinion in the last post; while the lecture cancellation was probably more aimed by the Science Museum at avoiding bad press, his dismissal from Cold Spring was unwarranted. One interesting point of view says that he in fact should have been allowed to appear at the Museum and quizzed in detail about his statements.
Robin McKie in the Guardian reports:
"In the end, Watson decided to return home, so no meetings occurred, a move that has dismayed many scientists who believed that it was vital Watson confront his critics and his public. 'What is ethically wrong is the hounding, by what can only be described as an illiberal and intolerant "thought police", of one of the most distinguished scientists of our time, out of the Science Museum, and maybe out of the laboratory that he has devoted much of his life to, building up a world-class reputation,' said Richard Dawkins, who been due to conduct a public interview with Watson this week in Oxford.

Nor is it at all clear that Watson is a racist, a point stressed last week by the Pulitzer-winning biologist E O Wilson, of Harvard University. In his autobiography, Naturalist, Wilson originally described Watson, fresh from his Nobel success, arriving at Harvard's biology department and 'radiating contempt' for the rest of the staff. He was 'the most unpleasant human being I had ever met,' Wilson recalled. 'Having risen to fame at an early age, [he] became the Caligula of biology. He was given licence to say anything that came into his mind and expected to be taken seriously. And unfortunately he did so, with casual and brutal offhandedness.'

That is a fairly grim description, to say the least. However, there is a twist. There has been a rapprochement. 'We have become firm friends,' Wilson told The Observer last week. 'Today we are the two grand old men of biology in America and get on really well. I certainly don't see him as a Caligula figure any more. I have come to see him as a very intelligent, straight, honest individual. Of course, he would never get a job as a diplomat in the State Department. He is just too outspoken. But one thing I am absolutely sure of is that he is not a racist. I am shocked at what has happened to him.'
I especially find Wilson's remarks revealing, because Wilson has always been known to be a compassionate, fair and objective scientist who would be loathe to offer unabashed support for pet ideas and people. I have read several of his books and never have found him to be biased or narrow-minded. I think that him saying something like this about Watson, a man who was his bete noire for years, surely says something. And Wilson's depiction of himself and Watson as the two grand old men of American biology is quite accurate. The two grand men made a rare appearance on Charlie Rose quite recently.

"Don't silence the scientists"

Susan Blackmore's quips on Watson and academic freedom. Particularly sensible is this:
Surely a society based on denying a possible truth is not a healthy one. If there are such differences we need to be absolutely clear that they do not mean that some groups are intrinsically inferior, superior, or more or less deserving. If it is true that children of different races, by and large and on average, differ in their abilities, then we need an education system that encourages and develops all those varied abilities rather than one narrowly and rigidly based on glorifying the particular kind of intelligence and academic achievement that comes more easily to the dominant group."
I am not so sure that cancelling his lecture at the Science Museum was uncalled for; I see it more as an angry rap on the old man's hand. On the other hand, I now am agreeing that suspending him from his CSHL job does not serve much of a purpose, and reflects badly on respecting academic freedom. After all, institutions have been known to distance themselves from their employees, especially academic ones, and most people don't equate institutions' opinions with those of their employees. For example, should MIT fire Noam Chomsky because he has sometimes espoused what some have claimed as radical and bigoted views? Of course not, and here the issue clearly is about academic freedom. If Lehigh University can simply get away with putting a disclaimer on their site distancing themselves from Michael Behe (whose creationist leanings are much more crackpot than even Watson's, if not as offensive-sounding), then why can't CSHL?

When scientists get old and boring...

James Watson has turned from provocative and scientific to racist-sounding and irrational. A pity...

...Read the rest of the entry on Desipundit...