- Home
- Angry by Choice
- Catalogue of Organisms
- Chinleana
- Doc Madhattan
- Games with Words
- Genomics, Medicine, and Pseudoscience
- History of Geology
- Moss Plants and More
- Pleiotropy
- Plektix
- RRResearch
- Skeptic Wonder
- The Culture of Chemistry
- The Curious Wavefunction
- The Phytophactor
- The View from a Microbiologist
- Variety of Life
Field of Science
-
Change of address2 months ago in Variety of Life
-
Change of address2 months ago in Catalogue of Organisms
-
-
Earth Day: Pogo and our responsibility4 months ago in Doc Madhattan
-
What I Read 20245 months ago in Angry by Choice
-
I've moved to Substack. Come join me there.7 months ago in Genomics, Medicine, and Pseudoscience
-
-
-
-
-
Histological Evidence of Trauma in Dicynodont Tusks6 years ago in Chinleana
-
Posted: July 21, 2018 at 03:03PM7 years ago in Field Notes
-
Why doesn't all the GTA get taken up?7 years ago in RRResearch
-
-
Harnessing innate immunity to cure HIV9 years ago in Rule of 6ix
-
-
-
-
-
-
post doc job opportunity on ribosome biochemistry!10 years ago in Protein Evolution and Other Musings
-
Blogging Microbes- Communicating Microbiology to Netizens10 years ago in Memoirs of a Defective Brain
-
Re-Blog: June Was 6th Warmest Globally11 years ago in The View from a Microbiologist
-
-
-
The Lure of the Obscure? Guest Post by Frank Stahl13 years ago in Sex, Genes & Evolution
-
-
Lab Rat Moving House14 years ago in Life of a Lab Rat
-
Goodbye FoS, thanks for all the laughs14 years ago in Disease Prone
-
-
Slideshow of NASA's Stardust-NExT Mission Comet Tempel 1 Flyby14 years ago in The Large Picture Blog
-
in The Biology Files
The only two equations that you should know
Cancer and the origins of life: The Age of Metabolism
This is clearly a mechanism that could be potentially targeted in cancer therapy, for example by blocking glucose transporters. But more generally it speaks to the growing importance of metabolism in cancer treatment. It seems to me that since the 1970s or so, partly because of discoveries regarding oncogenes like Ras and Src and partly because of the explosive growth in sequencing and genomics, genetics has become front and center in cancer research. This is a great thing but it's not without its pitfalls. In the race to decode the genetic basis of cancer, one gets the feeling that the study of cancer metabolism has fallen a bit by the wayside and is now being resurrected. In some sense this almost harkens back to an older period when cancer was conjectured to be caused by environmental factors affecting metabolism.
It's gratifying therefore that things like the Warburg Effect are being recognized. As the article points out, one of the simple reasons is because while many (frighteningly many in fact) genes might be mutated in cancer, a cancer cell usually has only a few ways to get energy from its surroundings: the range of targets is thus potentially fewer when it comes to energy. The recognition of this effect also speaks to the commonsense view that we should have a multipronged approach toward cancer therapy: genetics, metabolism and everything in between. Judah Folkman's idea of starving off a cancer cells's blood supply is another approach, what we may call a 'mechanical' approach (all of cancer surgery is a mechanical approach, in fact).
I could not help but also note the interesting coincidence that this tussle between emphasizing genetics vs metabolism has played out in another area which seems quite far removed from cancer medicine: the origin of life. For the longest time people focused on how DNA and RNA could have been formed on the primordial earth. It's only about 20 years ago or so that "metabolism first" started getting emphasized too: this approach emphasized the all important role that the evolution of life's energy generating apparatus (in the form of proton gradients and ATP) played in getting life jumpstarted. The metabolism first viewpoint really took off with the discovery of deep sea hydrothermal vents which can generate primitive energy-creating biochemical cycles based on proton gradients, alkaline environments and diffusion through tiny pores in the vents. Biochemists like Nick Lane and Mike Russell have been pioneers in this area.
The renewed focus on metabolism in treating cancer as well as in exploring the most primeval characteristics of life seems to me to bring the study of life in both health and disease full circle. Just like you cannot discuss the genetics of life's origins without discussing life's source of energy, so can you also not disrupt cancer's spread by disabling its genes without disabling its source of energy. Both are important, and emphasizing one over the other seems mainly to be a function of research fads and fashions rather than objective scientific reasoning.
As an amusing aside, the father of a very close friend of mine knew Otto Warburg quite well when he worked in Vienna in the 50s. Here's what he had to say about Warburg's scrupulous lab protocols: "One story I've always remembered was that he would clean his own glassware, used in experiments. He didn't trust any low-level dishwasher or junior staff around the lab. He wanted to make sure everything was perfect. I can confirm that even a tiny 'foreign fragment' in glassware can wreck an experiment."
"Arsenic bacteria": Coffin, meet nails
"There is nothing in the data of these new papers that contradicts our published data."
“There are many reasons not to find things — I don’t find my keys some mornings,” he said. “That doesn’t mean they don’t exist. The absence of a finding is not definitive.”
Update: Paul@Chembark nicely weighs in.
"Arsenic bacteria": If you hadn't nailed 'im to the perch 'e'd be pushing up the daisies
The abstract could not be clearer:
"A strain of Halomonas bacteria, GFAJ-1, has been reported to be able to use arsenate as a nutrient when phosphate is limiting, and to specifically incorporate arsenic into its DNA in place of phosphorus. However, we have found that arsenate does not contribute to growth of GFAJ-1 when phosphate is limiting and that DNA purified from cells grown with limiting phosphate and abundant arsenate does not exhibit the spontaneous hydrolysis expected of arsenate ester bonds. Furthermore, mass spectrometry showed that this DNA contains only trace amounts of free arsenate and no detectable covalently bound arsenate."
It's a fairly short paper but there are many observations in it which quite directly contradict the earlier results. The strain of bacteria that was claimed to grow only when arsenic was added to the medium was found to not grow at all. In fact it did not budge even when some phosphate was added, growing only after the addition of other nutrients. Trace element analysis using several techniques detected no arsenate in DNA monomers and polymers. This is about as definitive an argument as can be published indicating that the claims about the bacteria using arsenic instead of phosphorus in their essential biomolecules were simply incorrect. Much credit goes to Redfield who patiently and probingly pursued the counterargument, undoubtedly at the expense of other research in her lab. In addition she did open-science a great service and described all the ongoing research on the blog. She sets a standard for how science should be done, and we should hope to see more of this in the future.
Sociologically the episode is a treasure trove of lessons on how science should not be done. It checks off some standard "don'ts" in the practice of science. Don't fall prey to wishful thinking and confirmation bias that tells you exactly what you wanted to hear for years. Don't carry out science by press conference and then refuse to engage in debate in public venues. And of course, don't fail in providing extraordinary evidence when making extraordinary claims. If the original paper had been published cautiously and without hullabaloo, it would have become part of the standard scientific tradition of argument and counterargument. As it turned out, the publicity accompanying the paper made it a prime candidate for demolition by blogs and websites. If nothing it provided a taste of how one needs to be extra careful in this age of instant online dissemination. There's also some "do's" that deserve to be mentioned. The researchers did reply to criticism later and make their bacterial strains available to everyone who wanted to study them in a gesture of cooperation, but their earlier behavior left a bad taste in everyone's mouth and detracted from these later acts.
When the original paper came out, many of us were left gaping with eyes wide open at visions of DNA, ATP, phosphorylated proteins and lipids swirling around in a soup of arsenic, carrying out the exact same crucial biological processes that they were carrying out before without skipping a heartbeat. We just had a gut feeling that this couldn't be quite right, mainly because of the sheer magnitude of the biochemical gymnastics an organism would have to undergo in order to retool for this drastically different environment. Gut feelings are often wrong in science, but in this case it seems they made perfect sense.
What next? As often happens in science, I suspect that the defenders of the original paper will not outright capitulate but will fight a rearguard retreat until the whole episode drops off everyone's radar. But this paper here, it clinches the case for normal biochemistry as well as anything could. Good old phosphorus is still one of life's essential elements, and arsenic is not.
Would Ron Breslow's dinosaurs be typing this post?
The paper would have remained an interesting chemistry curiosity about the origin of life. It could have even served to remind the public that the origin of life is chemistry's Big Question, had it not been for two lines at the end of the piece:
"An implication of this work is that elsewhere in the universe there could exist life forms based on D amino acids and L sugars...Such life forms could even be advanced versions of dinosaurs, if mammals did not have the good fortune to have the dinosaurs wiped out by an asteroidal collision, as on Earth. We would be better off not meeting them."
What was interesting was that when I first came across the paper, I spent about two seconds on this line and moved on. The line is an amusing attempt at humor. You usually don't see humor in a technical paper, but in fact I am all for it; I think we need to spice up our otherwise dry scientific literature with the occasional joke. The content of the paper obviously had nothing to do with dinosaurs; it was about a specific technical chemical puzzle in the origins of life. And nothing would have come out of it had not the ACS PR office created a sensationalized news piece wrongly centered around these two lines. Scant attention was paid to the scientific substance of the paper, and it didn't help when other popular venues like The Huffington Post also questioned Breslow about it and received the following answer:
"From there, Breslow makes the jump to advanced dinosaurs. But why might extraterrestrial life be in that form? “Because mammals survived and became us only because the dinosaurs were wiped out by an asteroid, so on a planet similar to ours without the asteroid collision it is unlikely that human types would be there, more probably advanced lizards (dinosaurs),” Dr. Breslow told The Huffington Post in an email."
This set of events led to some unfortunate consequences. For one thing, the undue emphasis on dinosaurs at the expense of homochirality was another nail in the coffin of the public communication of chemistry. Here was a chance to explain to the public why the origin of life is chemically fascinating, but instead the chemical substance got overwhelmed by the precipitate of publicity surrounding dinosaurs. If the ACS is wondering why chemistry is having such a PR problem, now would be the time to look in the mirror.
The situation was exacerbated by more serious matters. Following a tip from some commentators, Stu Cantrill of Nature Chemistry looked up two old Breslow papers on the same topic and found out an extreme case of self-plagiarism; most of the paper seems to have been copied verbatim from the other sources. Breslow should not be blamed for inserting that little joke at the end - it was the media which sensationalized it - but he cannot be excused for the gratuitous self-plagiarism.
That's about what I want to say about this unfortunate episode since others have extensively covered it, but I do want to focus on Breslow's reply to The Huffington Post. Some have chided him for it, but the statement is actually not as absurd as it sounds since Breslow is asking a famous, age-old question in evolutionary theory: If the tape of evolution were re-run, would it again produce dinosaurs, Breslow and ACS editors? Or in other words, how predetermined is evolution, and how dependent is it on accidents? This question is a profound one , since if the answer is even an affirmative "yes", it has serious implications for not just science but for theology and philosophy and the whole puzzle of human existence.
Stephen Jay Gould was a powerful advocate of contingency in evolution, and his argument is not surprising to see. Evolution has been shaped by so many quirks of environment and the fate of individual organisms and species, that it would be naive to think that chance did not play a role in it. A single piece of wood accidentally drifting apart and carrying a few species on it to an isolated island can sculpt the evolution of that species. And we know for a fact that more massive events like volcanoes and earthquakes certainly did this. In fact it was geologist Charles Lyell's descriptions of such seismic events that started Darwin down the path to evolution and natural selection. It seems thus that if one could hypothetically run "what if" scenarios, it's very unlikely that anything approximating modern humans and dinosaurs could ever arise.
But this answer is not as obvious as it sounds. The biologist Simon Conway Morris has put forth a competing scenario in which certain universal features of evolution guarantee the presence of common adaptations during the evolution of species. This argument is based on what's called "convergent evolution" which essentially refers to the existence of common solutions to diverse evolutionary problems. A typical example would be all kinds of mammals, fish, amphibians and reptiles whose bodies are adapted to swimming. In most of these creatures you see similarly shaped, streamlined bodies, muscles and bones which are suited for swimming. Another principle concerns homologous structures (and not convergent evolution, as a commentator reminded me) like the digits of the hand, whose basic plan seems to be conserved across species. Indeed, homologous evolution provide some of the strongest pieces of evidence for common evolutionary origins. Thus Morris's argument is that even if the evolutionary tape were to run again, something similar to humans, dinosaurs, frogs and eagles (although the details would certainly differ) would be seen if the process were allowed to keep to itself for a few billion years. This interpretation acquires even greater significance when applied to humans; would such an intelligent, successful and self-centered species as Homo sapiens have evolved in an alternative evolutionary universe?
There is a lot of interesting discussion to be had about this topic. It's equally fascinating when applied to chemistry and leads to similar questions. For instance, what are the chances that the foundational compounds of life - DNA, RNA, amino acids, sugars, ATP - would have formed had evolution been left to run again with different tweaks and quirks of fate? Personally I find the questions somewhat easier to answer in case of chemistry since the formation of many of these compounds is governed by relatively simple energetic arguments. ATP's express purpose is to make otherwise unfavorable reactions possible by driving them downhill through high-energy bonds, and if not ATP it's hard to see how some other chemical compounds performing the same function could not have evolved. A great example of an attempt to answer these questions is seen in Frank Westheimer's classic paper "Why Nature Chose Phosphates?" in which he points to the unique properties of phosphate that make it such a dominant source in life's workings, both in metabolism and heredity.
Breslow's question is therefore quite sensible and its implications are fascinating to ponder. How would 2012 have looked like had the dinosaurs not been wiped out by an asteroid? Would they still have been alive and would humans have had the unfortunate fate of co-existing with them? Would they be as smart as humans? Naturally such scenarios would have profoundly affected the evolution and character of our civilization. Or would the dinosaurs have precluded the rise of Homo sapiens, perhaps by nipping our scarce population in the bud and making us extinct? Or would they have become extinct themselves through some other cause, perhaps extreme climate change? How indeed would planet earth have looked like had it still been ruled by dinosaurs?
Naturally we don't know the answers to these questions. But Breslow's little joke at the end, while sounding silly, inadvertently asks a very important and thought-provoking question. Too bad it was all obscured by the charges of self-plagiarism.
A new way to look for life on other planets

1. The authors note that the lunar surface partially depolarizes the light. Wouldn't this happen much more with light coming from very far that has hit multiple potentially depolarizing surfaces? Light could also be depolarized by dense atmospheres or by interstellar media like dust grains and ice grains. More interestingly, the polarization could also be reversed or affected by chiral compounds in outer space.
2. A related question: how intense does the light have to be when it reaches the detectors? Presumably light from worlds that are billions of light years away is going to strongly interact with surfaces and interstellar media and lose most of its intensity.
3. It's clear that chlorophyll is responsible for the signature of vegetation. Alien plants may not necessarily utilize chlorophyll as the light harvesting pigment, in fact they may well be equipped to use alternative wavelengths. There could also be life not dependent on sunlight. How we will be able to interpret signatures arising from other unknown pigments and constituents of life is an open question.
4. It is likely that advanced civilizations have discovered this method of detecting life. Could they be deliberately broadcasting polarized light to signal their presence? In the spirit of a past post, could they do this with specific molecules like amino acids, isotopically labeled molecules or stereoisomers? How sensitive is the polarization to molecular concentration? Any of these compounds would strongly suggest the presence of intelligent life which has developed the technology for the synthesis and purification of organic molecules.
Sterzik, M., Bagnulo, S., & Palle, E. (2012). Biosignatures as revealed by spectropolarimetry of Earthshine Nature, 483 (7387), 64-66 DOI: 10.1038/nature10778
The fine-tuning problem in protein folding: Is there a protein multiverse?

The reason why physicists are so worried about the values of these constants is because presumably if the values were even a little different from what they are, the universe and life as we know them would not exist. For instance, even a slight weakening of the strong nuclear force that holds nucleons together would prevent the formation of atoms and thus of all complex matter. Similarly, a slight change in the electromagnetic force would fundamentally alter the interactions between atoms crucial for the formation of chemical bonds between the molecules of life.
There thus seems to be some factor during the evolution of the universe responsible for fine-tuning the values of the constants to their present values within an incredible window of accuracy. The fine-tuning problem is a real problem not least because some religious believers point to the unchangeable and precise values of the constants to be the work of some kind of intelligent designer.
In the last few decades there have been a few attempts to resolve the fine-tuning problem. Probably the most exotic and yet in some ways the most reasonable solution has been to assume the existence of multiple parallel universes. Multiple universes (or multiverses) were first proposed by Hugh Everett, a brilliant and troubled physicist who worked on nuclear weapons targeting, as a way around the so-called "measurement problem" in quantum mechanics. The measurement problem is fundamentally embedded in the quantum description of our world. The unsettling thing (and one that troubled Einstein) about quantum mechanics is that it assigns probabilities to certain events, but provides no answer as to why only one of those events materializes when we make a measurement. Everett worked around this conundrum by assuming that in fact all possible events actually do take place, but only one of them is part of our universe; the rest of the events also occur, but in parallel universes. Everett's interpretation which was regarded to be a fringe explanation for years (thus making it successfully into science fiction books) is now taken seriously by many physicists.
Being a problem associated with the most fundamental constants of nature, the fine-tuning problem makes its way into all "higher-level" sciences including chemistry and biology. In chemistry the fine-tuning problem takes on a fascinating form and entails asking why certain molecules have become fundamental to living systems while other more or less equivalent alternatives have been discarded during evolution. For instance, why alpha amino acids (and why not beta or gamma amino acids)? Why left-handed amino acids and right handed-sugars? Why phosphates and not sulfates or silicates? In retrospect one can think of answers to these questions based on factors like stability, versatility and ease of synthesis, but ultimately we may never know. However, the fine-tuning problem also manifests itself in one of the most fundamental processes in the workings of life; protein folding.
The protein folding problem is well-known; given an amino acid sequence, how can a protein fold into a single three-dimensional structure and reject the countless number of other possible structures it can fold into? What is even more remarkable about this problem is that several thousand of those other structures are almost equienergetic with the preferred folded structure and yet they do not form. In fact it is this energetic equivalency between several structures that plagues all modern computational protein folding algorithms; the problem is not so much to generate the one correct structure as it is to distinguish it from other structures that are very close to it in energy. The fundamental assumption in all these algorithms is that the correctly folded structure is the lowest-energy structure. But that does not mean it differs in energy from the other solutions disproportionately. Therein lies the rub.
Ever since I heard about the protein folding problem this issue has bothered me as I am sure it has others. Consider that the free energy difference between two different protein structures may be only 5 kcal/mol or so, about the energy of a single hydrogen bond. Yet a protein when it folds unerringly picks only one among the two structures. How can nature manage to pick the right solution every one of millions of times when it folds proteins inside our body each second? To put it another way, here's the "fine-tuning problem" in protein folding: why does a protein always adopt one and only one correct structure even when many other structures, very similar in energy and presumably in function, are available to it?
From a retrospective evolutionary standpoint the answer to this conundrum is perhaps not too surprising. Imagine what would happen if every time a newly synthesized copy of a given protein folded, it formed a slightly different structure. This heterogeneity and lack of quality control would play havoc with the intricate signaling networks in our body. Evolution simply cannot afford to have different three-dimensional structures for the same protein, no matter how slightly different they are. No wonder that quality control in protein folding is extreme. Of course nature does make occasional mistakes, but wrongly folded proteins are quickly degraded and destroyed.
Nonetheless, the original dilemma persists and metamorphoses into a further interesting question: isn't it possible for a protein structure that is slightly different from the one true structure to be functional? There are two possible answers here. Perhaps the alternative structure was functional during evolution at one point, but competition from the slightly better structure weeded out the former from the gene pool. If this is the case, could there be a chance that there is some unknown form of life in which this other slightly different yet perfectly reasonable structure still exists, happily doing its job with no evolutionary pressure around to discard it? The best way to answer this question is to compare proteins from different species, something that has been extensively done for years. But such a comparison usually reveals protein homology, in which the sequences themselves are slightly different and yet perform similar functions.
That's not what we are looking for. What we are looking for is "two" proteins with absolutely identical amino acid sequences which in two different creatures adopt slightly different three-dimensional structures and perform similar functions. Or they could even perform different functions, thus validating evolution as a force that puts slight differences to optimal use. Let us call these proteins with identical sequences but different functional folds "fold mutants". To my knowledge such fold mutants have not yet been found.
A second albeit more exotic solution to the fine-tuning problem appeals to a possible "protein multiverse". The argument here is that the kind of protein structures which we observe are indeed not the only feasible or functional ones. There are in fact other structures which are not only well-folded but also functional. For some reason, evolution, during its intricate dance of maintaining order, structure and function, chose to discard these structures in favor of ones that were more functionally relevant in this universe. However there is no reason why they could not have been picked in a different universe, where the laws were slightly different. There is another way to think of a protein multiverse; as a set of valleys and peaks where the valleys correspond to different folded structures. Such a metaphor has also been used by physicists to argue that our universe with its own set of fundamental constants corresponds to one local minimum in this "multiverse landscape", with other universes populating the other dips. Similarly we could imagine a protein multiverse landscape in which different protein folds occupy different valleys; we favor a particular fold only because it inhabits our own valley, but that does not stop other folds from corresponding to the others.
In a different universe, hemoglobin could have folded into a marginally different structure in which it bound not oxygen but some other small ligand like ammonia more efficiently. Such a fold mutant of hemoglobin would be useful to creatures which survive in an ammonia-rich environment (ammonia in fact has a greater temperature range as a liquid compared to water). Or one could imagine a fold mutant of carbonic anhydrase, which catalyzes the conversion of carbon dioxide to bicarbonate at a different pH or a different temperature. Fold mutants of known proteins could have every conceivable property different from their original "correctly" folded counterparts, including shape, size, polarizability and stability. The fold mutants could be exquisitely adopted to living conditions in their parents universe. Their special folds could be stabilized by environments differing from those found on earth in ionic strengths, hydrogen bonding capabilities and hydrophobicities. For a given protein, this alternative fold could in fact be the lowest in energy and its companion fold found in our universe could be slightly higher in energy.
This kind of speculation immediately suggests two explorations. One is to look for fold mutants in other parts of the universe. This search would be part of the search for extraterrestrial life that has been going on for years. But the point is that if we happen to find fold mutants of existing proteins on other planets or in other inhospitable environments, these mutants would provide powerful support for the solution of the fine-tuning problem. They would tell us that the fine-tuning problem exists only in our narrow-minded anthropocentric imagination, that there could indeed be many folds of the same protein that are robust and functional and that we just happen to inhabit a part of the universe that stabilizes our favorite fold.
The other more readily testable experiment asks if we can produce different functional folds from the same amino acid sequence by varying the experimental conditions. It's of course well-known to crystallographers and protein chemists that slight changes in physicochemical conditions can play havoc with the structure and function of their proteins. But most of the times these slight changes in conditions produce misfolded protein junk. Is there an example of someone slightly (or even radically) varying conditions in a test-tube and producing two different folds of the same protein that are both stable and functional? If there is one I would be very eager to know about it.
On the other hand, if it turns out that it's impossible to find two different functional folds for a single protein, such an observation might well lend credence to the physicists' multiverse with differing fundamental constants. It might well be that under the present values of fundamental constants, it is impossible to stabilize a slightly different protein fold and make it functional. Perhaps only a slight albeit conceptually radical restructuring of the fundamental constants could result in a universe that is friendly to fold mutants. Such a universe would still enable the creation of complex matter through the appropriate combination of the constants, but it would indeed result in life very different from what we know.
The protein multiverse could thus help resolve the fine-tuning problem in protein folding and make biochemists and physicists part of the same multiverse fraternity. More importantly, it could once again reinforce the diversity of creation. One could have different universes with the same fundamental constants but different protein folds or different universe with entirely different combinations of the constants themselves. Take your pick.
If uncovered, such diversity would only echo J B S Haldane's quote that the "universe is not only queerer than we suppose, but it is queerer than we can suppose".